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Complex Ginzburg-Landau equation in the presence of walls and corners
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We investigate the influence of walls and corng@rith Dirichlet and Neumann boundary conditigns the
evolution of two-dimensional autooscillating fields described by the complex Ginzburg-Landau equation. Ana-
lytical solutions are found, and arguments provided, to show that Dirichlet walls introduce strong selection
mechanisms for the wave pattern. Corners between walls provide additional synchronization mechanisms and
associated selection criteria. The numerical results fit well with the theoretical predictions in the parameter
range studied.
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[. INTRODUCTION wherel is a closed path around the defect. The topological
nature of the phase singularities implies thas a positive or
Spatially extended nonlinear dynamical systems displayegative integer, and that the total topological charge in the
an amazing variety of behavior, including pattern formation,two-dimensional system is constant, except for the defects
self-organization, and spatiotemporal chabs4]. Much ef-  flowing in and out through the boundaries. In the interior of
fort has been devoted to the characterization of the differenge system, defects can only be created or annihilated in pairs
dynamical regimes and the transitions between them fopf opposite chargeSpiral defectsi.e., defects around which
model equations such as the complex Ginzburg-Landathe lines of constant phase have a spiral form, are typically
equation(CGLE) [5]. This is an equation for a complex field formed in the CGLE(for a# B). The interaction between
A(x,t) that conveniently rescaled reads these spiral structures has attracted much attef@brSpiral
solutions of a different nature appear, e.g., in excitable media
such as the Belousov-Zabotinsky reactiph5,16 and
electro-hydrodynamic convectiqsee, e.g., Ref.17]).
One important source of defects in real systems are the
« and B are real parameters. This equation describes thBoundaries. Under some circumstances, walls can introduce
onset of an oscillatory regime through the Hopf bifurcationdefects into the system increasing the amount of disorder in
of a homogeneous state, and it is used generally as a mod&e dynamics. In other situations, the boundaries play the
equation due to the rich variety of its solutions. Binary fluid Opposite role: they annihilate defects driving the system to a
convection[7], transversally extended lasd®9], chemical ~more ordered state. In general, the interplay between these
turbulencd 10,11], bluff body wakeg12], the motion of bars  two behaviors and the proper dynamics of the bulk can push
in the bed of riverd13], the jet streanj14], and other sys- the system to configurations different from the ones found
tems have been described using the CGLE, or coupled paitghder boundary-free condition@eriodic boundary condi-
of similar equations. In this paper, we will restrict ourselvestions, for instance However, few studies have addressed the
to situations well described by a single scalar CGLE in ainfluence of the boundary shapes and boundary conditions on
proper parameter range. complex dynamics. The importance of these effects in the
The CGLE admits simple plane-wave solutions. Howeverfransverse patterns of laser emission, where aspect ratios are
for most of the @, ) parameter range, a typical evolution not large, is visible in recent works such[ds,19. In addi-
starting from random initial conditions leads to complex, tion, average patterns in Faraday waves and other spatiotem-
steady or evolving, states. An important ingredient in theporally chaotic systems have been observed to be sensible to
description of these dynamical regimes in two-dimensionaboundary shapg20,21 and boundaries are able even to in-
domains is the interaction of singular points caléefects  duce spatial chaos in otherwise nonchaotic systeaak All
For our purposes, a defect is just a zero of the complex fielghose strong influences of boundaries on the dynamics of
A, where there is a singularity in the phaselefined by the extended nonlinear systerfia3] provides us with the moti-
relationA=|A|exp(¢). There is a topological charge associ- vation for a more systematic study of boundary effects on the

ated to each defech, defined by CGLE performed in this paper.
In Ref. [24], we performed a first numerical exploration

of these effects, via computer simulations of the CGLE in
1 circular and rectangular geometries with null-Dirichlet

A=A+ (1+ia)VZA—(1+iB)|A?A, (1)

n= 27 FV"D'dr’ @ boundary conditions. The results reveal a fundamental role
of boundaries in selection mechanisms. In particular, wave
emission from Dirichlet wallgi.e., walls whereA=0), and
*Email address: victor@imedea.uib.es the dominance of corners as pacemakers for the whole sys-
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tem were important observed effects. Understanding the ori- (a) > 1 o
gin of such effects is the main goal of this paper. To achieve L ~
it, we will focus first on the effect of a single lateral wall, .
where the complex field is set to zero, in the selection of the
pattern. After this, we will study how the presence of corners
(i.e., the intersection of two wallsrestricts the family of
solutions found previously. It should be noted that we use Y.
Dirichlet boundary conditiongand in some parts of this pa- r
per, also Neumann boundary conditibas simple phenom- ©
enological conditions to explore deviations with respect to -
the more commonly used periodic boundaries. A different LR
issue is to establish what are the pertinent boundary condi- '
tions arising for the CGLE when it is derived as an amplitude \
equation in particular physical contex®r example in op- J.
> |

)

\
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o
~
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tics, fluids, etg. Some results in this last subject can be
found in Refs[25,26]. ©) T

In the next section we review previous numerical results
on the CGLE in several geometries and boundary conditions.
In Sec. lll, we summarize analytical solutions in unbounded
domains. In Sec. IV, we present analytical and numerical
results for the CGLE in the presence of a lateral Dirichlet
wall. In Sec. V, we extend our study to the case of corners l
and in Sec. VI, we finish with our Conclusions.

FIG. 1. Time evolution of the solution of the E) at arbitrary
times with parameter values=2, = —0.2. The initial conditions
II. NUMERICAL OBSERVATIONS is random. When the boundary starts emitting waves, the spiral

Iti it ident d fi db . tud defects are pushed to the interior of the domain and annihilate in
IS quite evident, and confirmed by our previous stu ypairs of opposite charge. The modulus of the field is plotted in the

[24], that the effect of boundaries is more noticeable in theeg cojumn and the phase in the right. Gray scale runs from black

parameter regimes for which large correlation lengths areminimum) to white (maximun). The final state(not shown con-
present in the system. In strongly chaotic states with shorying 5 single defect, as the one in Figa)2

correlation lengths, the main effects of walls are restricted to

boundary layers close to them. Consequently, we restrict hefigetween the waves coming from orthogonal walls. Finally,
the presentation of our numerical results to the region othe system reaches a frozen state of the type displayed in Fig.
parameters for which coherent oscillations extend ovep. The termfrozenis used here to denote that the modulus is
nearly the whole system. This happens in most of thea steady solution, although the phase is time periodic. More
Benjamin-Feir stable region in parameter space, that is, fotoncretely, our frozen configurations are well described by
1+aB>0, but also in other regions close to it. Defects andA(x,t) =f(x)e '“!, with w real andf a possibly complex
shocks however disrupt the otherwise ordered plane wavefunction of position.

and its location and structure are strongly dependent on

boundaries. In Fig. 1, the CGLE is solved in a square with  (a) (b)

null-Dirichlet boundary conditionsA=0) [27]. The zero-
amplitude boundaries facilitates the formation of defects near

the walls. Starting from random initial conditions, defects are
actively created in the early stages of the evolutiae Fig.

1). After some time, however, all the points on the bound-

aries synchronize and oscillate in phase so that plane waves
are emitted. Defect formation ceases, and the waves emitted (©)
by the walls push the remaining defects towards the central
region of the domain. There the defects annihilate in pairs of
opposite charge, and as a result of this process, a bound state

is formed by the surviving set of equal-charge defects. The
orientation of the waves emitted by the boundaries also
changes during the evolution. The synchronized emission of

the early stages produces wave propagation nearly perpen-
dicular to the boundary, but in the late states the wave vector G, 2. Frozen structures under null Dirichlet boundary condi-
tilts to some emission angle of approximately 45°. The pretions in a square of size 1060L00. Parameter values ae=2, 3
cise value of this angle depends on both the parameter values—0.2 (a,h, anda=2, 8= —0.6(c,d). Snapshots of the modulus
and the geometry of the boundaries. The fact that this anglg\| of the field are shown in the left column and snapshots of the
is not exactly 45° is made evident by the slight mismatchphase in the right column. Gray scale as in Fig. 1.

( \
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FIG. 4. Frozen structures under null Dirichlet boundary condi-
tions in domain with stadium shape of axis 20000 for parameter

FIG. 3. Frozen structures under null Dirichlet boundary Condi'value3a=2, B=
tions in a circle of diameter 100 for parameter values 2, =
—-0.2 (a,p, and@=2, B=—0.6 (c,d). Snapshots of the modulus
|A| are shown in the left column and the phase is shown in the right
column. Gray scale as in Fig. 1. act as pacemakers from which wave emission entrains the

whole systenj24].

In the final frozen state, defects are confined in the centeém-g?f;tadéurg shlapé'::lg_.eétlj).r_r;lﬁ:s ft)egtﬁjretfa(')fr:theelr:(\;vz'?ce-la
of the domain forming a rigid static chain. Shock lines ap- I€s previously studied: it has straig reutar

pear where waves from different sides of the contour collide?oggg;'vleg ttglscgrisb?héh;:l:\s\\/lssbgr:;\?igrszstag(taspc?i:kijse% ﬂ,isge
The strongest shocks are attached perpendicularly to th . | . '
n the one hand the lines meet the straight portions of the

walls and the general shock configuration is what one woul order of the stadium with some characteristic angle, as it
expect for small symmetry breaking of the square geometr . . angie,
appens in square domains. However, these lines bend to

[28]. The number of defects depends on the initial Conditionbecome nearly tangent to the semicircles in the places where
Solutions with no defects are also foufelg., Figs. &c,d)], thev meet wit);\ th 9 rtions of the boundar P A tvpical
and are calledargetike solutions. This kind of solutions is €y meet nese portions o he boundarnes. A typica
S . . - - frozen solution displays a shock line connecting the centers
not seen in simulations with periodic boundary conditions. . . ) . )
of the circular portions of the domain. This shock line usu-

In our simulations in the square geometry with Dirichlet ally contains defects and their dynamics in this stage is much
boundary conditions, the direction of the phase velocity y y 9

rom e wals o oo he walind te wave rumber S9WT 17 e st hatoceus i he bk of o o
depend on the parameter values in a way that differs from thﬁnd defect-free ta? et solutions as in 'the case ofp the circle
usual spiral waves in infinite systerteee Ref[29] and Sec. 9 ’

lIl). Thus, boundaries are playing an important role in theand the behavior of the phase velocity is also similar in the

selection of the wave speed and wave number. way its direction can be changed by modifying the param-
In a circular domain(Fig. 3), the frozen structures are eters. . . .
either targetsno defects or a single central defect. Groups 10 Summarize, Dirichlet boundary conditions play a
of defects of the same charge can also form bound states, bgpuble role. On one hand, the walls naturally behave as
instead of freezing, they rotate together. This contrasts witi§ourcesor sinkg of defects. On the other hand, a wall with
the behavior of the square domains and is correlated with theull-Dirichlet conditions shows a tendency to emit plane
absence of shock lines linking the boundaries to the center iwaves that will coherently fill the whole system. The inter-
the case of the circular domains. These links are probablplay between these two properties of the boundaries gives
responsible for providing rigidity to the stationary configu- rise to interesting behavior. In the case of frozen states, the
ration in the square case. Tiny shock lines associated to smalharacter of the walls as wave emitters dominates. The inter-
departures from circularity in the lines of constant phase casection of two walls(a corney is observed also to emit
be observed also in the circle but these lines end in the buliwaves, and the whole system becomes synchronized to this
of the region before reaching the boundaries. On the otherorner emission. In circular domains, on the other hand,
hand, the constant-phase lines reach the boundaries neathere are no corners and wave selection is definitively domi-
tangentially in contrast to what we observe in the square. Fonated by the internal spirals. Another aspect of the dynamical
circular domains, the phase-velocity direction changes witldominance of the walls in the square case is that defects form
parameters in a way more similar to the infinite-system spia chain that is anchored to the boundaries by a set of shock
ral. This is another feature revealing that circular boundarie$ines; in a circle, on the contrary, the asymptotic state is
introduce less rigidity into the pattern than square ones. Thasually a bound state disconnected from the boundaries.
absence of corners is probably the main qualitative differ- Gaining some understanding of aspects of our numerical
ence. In fact, when corners are present, they are observed ébservations is the goal of the next sections.

—0.2. Snapshots of the modulls| are shown in
(a) and the phase is shown {b). Gray scale as in Fig. 1.
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I1l. SOLUTIONS IN UNBOUNDED DOMAINS w=p- k2(,8— a), 7
In this section, we review some of the analytical solutions op2—1
of the CGLE in unbounded domains. First we start with k= P )
plane waves, continue with one-dimensional holes, and finish 3pa

with two-dimensional spirals.

The CGLE possesses, among many other solutions, d4(8—a)+18a(1+a®)}p*~{4(B—a)+9a(1+ap)}p?
family of plane-wave solutions and solutions containing +B—a=0 9
phase-singular points. The plane-wave continuous family is '
parametrized by the corresponding wave-numkerThe | a=0, we get
form of the solutions isA=Rexdi(k-x—wt)], where R
=V1-k?, w(k)=B-k*(B—a), andk=|k|. The limit of w=p(1-k?), (10
stability of plane waves is known as the Benjamin-Feir line
and is given by the curve+a8=0; if this quantity is posi- p=1/\2, (11
tive, some stable plane wave exi$89]; if 1+ «B<0, all
plane waves are unstable. The limit is given by the stability 3k
of the plane wave wittk=0. Stability analysis gives that B=- m (12)
plane waves possessing wave-numbaén the rangg — k.,
ko, where ko= V(1+ap)/(3+aB+2p7), are stable. The Thysg andk have opposite signgk<0), whena=0. For
instability is with respect to long-wavelength disturbancesypy vajue ofe and g, the existence of a defectlike solution
whose wave vectors are parallel ko(Eckhaus instability  fixes the value of the asymptotic wave-numkemnd accord-
[30]. It will be useful for the future discussion to have an jngly that of w. We mention here that for configurations of
expression for thephase velocityof the waves, and of the  the frozentype, the solutions withy arbitrary can be ob-
group velocityof small perturbations on such waveg, and  tained from the ones witke=0 by means of a change of

Vgr, respectively variables. This fact, which frequently simplifies analysis, is
w(K) detailed in the Appendix.
Vph:_”k, (3) The phase and group velocity far from the core for the
k one-dimensional standing hole with=0 are
Vgr=—2k(B—a)k. 4 1—k? 3
R ’ Uph=¥=—7<o, (13
k is the unit vector in the direction d&f. The expression for 2

the group velocity[31] turns out to be equivalent to the
linearly looking expressiong, =V, w(k), even thougho(k)

is the dispersion relation of nonlinear waves. . .
In addition to simple waves, the one-dimensional CGI_EThus, the propagation of the phase is towards the core of the

possess a one-parameter family of solutions for which théjefec_t m_dep_endently of the value Gt However, the group
amplitude displays a region of local depression. Their an velocity is directed outwards from the core of the defect.

lytic form was determined by Nozaki and BeKi@2], and aThus, small perturbations to this solution are expelled away

they are, therefore, also referred to as Nozaki-Bekki solulcrom the core. The case of arbitraty can also be solved

tions or holes One member the family is characterized by ?hurr}_encallﬁl fro?] EQﬁ(7)—(9).| G!;/ep the paramgatefm(,(é), dit
the value ofA being zero at a point, called tteore of the € ine where the pnase velocily IS zero can be found and |

hole, and asymptotically behaving, at both sides of the core> pl'o'tted. in Fig. 5. The group velocity trns out to'be always
as a plane wave of wave-numbler It is worth noting that positive (i.e., outwards from the coydor the standing hole

> . : . . lutions.
this one-dimensional hole solution was also obtained by° . . . .
Hagan[29] as a subproduct of his calculations for two-f The two-dimensional spiral wave solutions of the CGLE

dimensional spirals. At variance with the other members of'¢ s_olutlons winding ar_ound a defect cgre., a phase sin-
the Nozaki-Bekki family, this hole does not travel into the gularity). In polz_;\r coordinatesr(6) around the core, they
system, and thus, it will be denoted as #tanding holelts have the analytical forri29]:
'?hneaIr)]/gEaalcgépéeelﬁsg)e(l\:l\t\r(i)t?;l]ngsthe origin of coordinates at D(r,6,t)=R(r)exdi(+S(r)— ot)]. (15)

vgr=—2kB>0. (14)

. This solution represents a phase pattern rotating steadily
Wy(x,0)= 1=k tanf(p)exdi{g()—etl], 5 aroundr=0 with frequencyw (and frozen modulys The
amplitudeR is a monotonically increasing function of pro-
portional tor near the origin, and asymptotically approach-
dy/dx=ktanH px), (6) ing some valueR,,<1 for larger. The functionS behaves
smoothly in the neighborhood of the origin, taking the form
[i.e., = o+ (k/p)log coshpx), with ¢, an arbitrary refer- S~Sy+ S;r2. Far from the originS becomes proportional to
ence phaseand w, k, andp are related according to r, behaving ass~kr. In this way, in the distant region, the

where ¢ is a function ofx satisfying
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FIG. 5. Parameter space of the CGLE. Different regions are
separated by solid lines: BF unstable regime where there are no
stable plane-wave solutions in the infinite system; regions where the
phase velocity ,j, is positive or negative are also shown, and sepa-
rated by an additional solid line for the case in which a single
Dirichlet wall is present in the systefthis line applies also to the (e) ® N
one-dimensional standing hgleStar line corresponds to zero phase
velocity for emission from a corner between two Dirichlet
walls spanning an angle of 135°; diamond line corresponds to a
90° corner.

isophase lines approach the form of Archimedian spirals,
converging to plane waves with wave-numberThus, R,

=J1—k?2 ando=8— kz(,B— ). The charge of solutions of FIG. 6. Modulus(left column and phaséright column of the
the form Eq.(15) is, according to Eq(2), equal to+1. soluti_o_n of Eq.(1) for «=2 andpB= —0.2 with Dirichlet_ boundary
There exists also a negatively charged spiral, with the fom,ﬁ:ondltlons for the left boundary, Neumann for the right one, and
of Eq. (15) but with @ replaced by 6. In spiral V\;aves wave periodic in the horizontal onega,b: Early-time state starting from

NN . random initial conditions of small amplitude,d: The final
motion is induced in such a manner as to cause the globa . : .
o . asymptotic state. The lines of constant phase travel to the right.
synchronization of the medium by the defect.

. . ! . Notice that although there is a developed spiral defect, it disappears
It is important to notice that, in both onghe standing g pec sp PP

. . ! e . through the Neumann boundary at long timesf): The long-time
hole) and two dimensionéthe spiral solutiopy imposing the asymptotic state from an initial condition consisting of distorted

requirements of zero field at the core, and plane-wave behay;ane wave with wave vector oblique to the boundaries. A solution
ior far from the core, the value & gets fixed. Thus, fiXing  of the form Eq.(16), with wave vector close to the initial one, is

the parameter valuesa(g), the spiral structurgand the finally reached.
standing holg is unique(except for an arbitrary change in

the location of the coje The precise way in which wave- g expelled or annihilated. The stationary solution is the two-
number, frequency, phase or group velocities depend on pafimensional extension of the one-dimensional standing hole
rameter values «,8) can be found, for example, in Ref. sojution described in Sec. Ifithat is a continuous line of
[29]. holes with their cores on the walVy(x,y,t) =Wy (x,t)].
We can investigate the possibility of more complex solu-
IV. SOLUTIONS WITH A SINGLE WALL tions in which the amplitude is inde_pen_dent of y_u-ﬁrec'gion
and takes the form of a hole solution in one dimension, but

As a first step to understanding the solutions of the CGLEwith a phase that depends explicitly on both coordinates. We
in bounded domains, we study in this section solutions in th&tudy first the case af=0 to come back later to the general
presence of a single wall where the value of the complexase.
field A is set to zero. We observe numerically that, starting \We look for solutions of the form
from random initial conditions in a bounded domain with a
single Dirichlet wall, frozen solutions are reached asymptoti-  y,(x,y,t)= V1 —kZtani px)exfi{#(x,y) — ot}]
cally (see Fig. 6. In our numerical implementation, the Di- 1
richlet wall (A=0) is the left one, Neumann boundary con-
ditions (zero normal derivative of\) are applied to the right \ith w=pB(1-k? and k2=k§+ ki' Assuming the form
wall, and the upper and lower limits of the domain are iden-;(x y) = y(x) + y(y), we get the relations
tified via periodic boundary conditions. We use the Neumann
wall because previous numerical res(i24] reveal its rather a.h(x,y) =k, tanh(px), (17)
passive sink role, being able to absorb waves and defects
without altering the selection mechanisms imposed by the

Dirichlet wall. Initially, some (spira) defects are formed. dyp(x.y) =Ky, (18)
Typically, the Dirichlet wall starts to emit plane waves that 5 )
push the defects towards the opposite boundary until they are 2p°=1-kj, (19

036205-5
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3kp=B(1—Kk?), (20)
and substitution of Eq(19) into Eq. (20) gives
3ky1—K2
— 5= ALK, (21)

5
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imposing periodicity in the directiog, finiteness at large,
and the Dirichlet condition at=0, one finds that the linear
eigenmodes are of the forrh(x,ky(x,y)zekyysin(kxx), with

eigenvalues e=1—(1+ia)(ki+k?). Thus, eigenmodes
with small wave numbers grow faster and will dominate at
the beginning of the nonlinear saturation regime, as is indeed
observed. The periodic boundary conditions in thdirec-

Note that ifk,=0 we recover the expression for the one-tion quantize the value df, of the eigenmodes, thus forbid-

dimensional standing hole solutigim particular we recover
Eqg. (12)].

ding any smallk, different from zerok,=0 givesn,=0,
and this value will be preserved by the nonlinear regime. In

We can perform a similar calculation for the general caseonsequence, typicallg, will adapt to the nonlinearly im-

of parametersy and 8. For a solution of the form Eq16),
Egs.(17) and(18) remain valid, andv, k, andp are related
according to

w=B—K(B—a), (22)

o 2pPtkg-1
kx__f:’p—a’ (23
0= —3pk,+ a(2p?—k2)— B(1—Kk?). (24)

posed value given by Eq$22)—(24) for constantk,=0.
These arguments are confirmed by numerical simulations
with three Neumann walls and one Dirichlet one, in which
tilted waves with small, but not always zero, valuekptre
obtained outside the boundary layers around de Neumann
walls.

We note that, although solutior{46) represent emission
at an angle with the wall, the analytic expression predicts a
small boundary layefof sizep~1) in which the wave num-
ber leaves its asymptotic orientation to become parallel to the
wall, so that isophase lines arrive perpendicular to the

In contrast with the selection mechanism for the Standi”%oundary. This is observed in the numerical soluti¢sese,
hole or the spiral solutions, the presence of the wall does nghy example, Fig. &), and also the rectilinear walls of Figs.
select a unique wave vector, but a one-parameter family of 2 and 4 thus, nicely confirming the relevance of the
solutions parametrized by eithkg or k, arises instead from  anajytical solutions of the observed configurations. In the
Egs. (17)—(21) or (22)—(24) for given values ofa and 8. case of wave emission perpendicular to the watid thus,
Different solutions in the famlly differ in the direction and wave number also perpendicu|ar th the ana|ytica| expres-
magnitude of the wave-vectdk. Different wave vectors sjons imply that this wave number also vanishes at the
change the angle of intersection between the lines of constagbundary. Thus, as a rule, the wave-vector component per-
phase and the wall. Figureses-f) are the final state in a pendicular to the wall always vanishes at the wall. We do not
numerical simulation in which the initial condition was close observe an ana|ogous Vanishing of the wave-number compo-
to Eq. (16) with k oblique with respect the wall. The dis- nent perpendicular to the wall in the case of curved walls. In
played state is identicdfar enough from the Neumann wall  the square, however, conflict between the orientation emitted
to Eq.(16) with Eqgs.(22)—(24) thus numerically proving the  py neighboring walls occurs, and the exact expres&léhis
stability of this solution. Different orientations &f can be appropriate 0n|y near each wall. The conflict between neigh_
tested in the same way. However, if starting with randomporing walls is resolved at long times by emission from the
initial conditions, we typically find solutions corresponding corner, as will be seen in the next section.
to the casek,=0 [Figs. Gc—d] that is the simplest two-  Another important kind of solutions with a single wall is
dimensional extensiork(=0) of the standing hole. the one that appears with Neumann boundary conditions.
The prevalence of thie,=0 solution when starting from  The solutions observed close to the right wall in Figs—)
random initial conditiongof small amplitudg can be under-  are of this type. These solutions have been already analyzed
stood from the characteristics of the linear instability of thein the literature, especially in the context of interactions be-
stateA=0, and from the effect of the periodic boundary tween spirals. The reason is that a Neumann wall acts as a
conditions used in the walls perpendicular to the Dirichletreflecting boundary, so that having a wave impinging into the
one in our simulationghorizontal walls in Fig. & The peri-  poundary is equivalent to the interaction between two
odic conditions imply that thg-winding numbem, , defined  sources of waves located symmetrically with respect to the
by an integral similar to E¢(2) in which the patH” stars and  wall [6]. Despite the interest of such solutions, no exact ana-
ends in corresponding points of the horizontal boundaries, i§tical expression has been found for them. Analytical solu-
quantized, and it remains constant if defects are not createdons have been obtained, howeya8], by solving the phase
This is the case in the parameter range considered here afteguation that approximates the phase dynamics for small am-
a short transient of linear evolution in which the nonlinearplitude perturbationgsee Sec. VB In agreement with the
state is developed. In consequence,ithef the final state is  numerical observations, the solution presents a maximum
determined by the value of this quantity at the end of themodulus at the walfa shock and the isophase lines, straight
linear regime. No such rigidity occurs alorgecause of the in the far field, deform when entering a boundary layer close
nonperiodic conditions used. The linear regime in which theto the wall to arrive perpendiculdfor tilted far-field inci-
pattern grows starting fror~0 can be analyzed by ne- dencg to the wall. We will see in the following that these
glecting the nonlinear term in Eq1) and introducing the “tilted Neumann waves” are of relevance when corners
ansatzA(x,y,t) = f(x,y)e. By separation of variables, and are present.
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o T

A FIG. 8. Phase of the solution of E¢l) in gray scale, for pa-
rameter valuesa=2, B=-0.2. In (a) the angle ¢=u/2
+tan (1/5); (b) ¢=3m/4.

E =180° [obtained from Eq(5)] and ¢=135° (from numeri-

FIG. 7. Domain and boundary conditions for the simulations inC@l Simulation are plotted in Fig. 5¢=90° corresponds to a
Sec. V. InA andB, null-Dirichlet boundary condition<, D, andE, ~ Square and is also plotted in Fig. 5. We do not see differences
null-Neumann boundary conditions. between squares with two or four Dirichlet walls.

Summarizing, for frozen structures, the presence of Di-

It is clear on physical grounds, and confirmed by the analichlet walls establish a selection mechanism different from

lytical expressions from the phase approximation, that thdhe as_sociated to the presenc_e_of a spiral_core in an_in_finite
Neumann wall can act as a sink of waves of arbitrary fardomain(Sec. Il). When the Dirichlet wall is broken, it is
field orientation and wavelengtithe maximum modulus at S€en in the earliest stages of wave-pattern development that

the shock will adapt accordinglyNeumann waves consti- emission with isophases nearly parallel to the walls is initi-
tute, then, a biparametric family for fixedv(8), and Neu- ated, but collision between the waves from different walls

mann walls do not impose special selection mechanisms. &rises and a distinct final state, with wave number, phase
velocity, etc., fixed by &, 8, ¢) is reached. We now investi-

gate how this may happen.
V. SOLUTIONS IN PRESENCE OF CORNERS

We now pay attention to the effects induced by the pres- B.V solutions of the phase equation and pattern selection

ence of corners, i.e., how the solutions adapt to the emission For unbounded domains and for small amplitude modula-
of two semi-infinite lines. In Sec. V A we will show that the tionS, a phase description of the Comp'ex fidddcan be

phase velocity not only depends on the parameters of thgade. The approximate equation for the phadd &%
CGLE a andg, but also on the angleé between the walls of

the boundary. In Sec. V B, we will present solutions of the ¢:w0+ boVZ2@+b(Ve)?, (25)
phase equation representing wave collision; they are usually

calledV solutions. These solutions should be matched withyherebh,=1+ g, by=(8—«a), and wy=— 8. The modu-
the boundaries, which provide selection mechanisms for thg,s R of the solution is slaved to the phase B&~1
wave pattern. —(Vg)2—aV2ep.

We look for solutionse= ¢(X,y,t) representing phase
A. Phase velocity dependence on the angle at the boundary ~ waves with nonstraight isophase lines. This is what is ob-
served when Dirichlet waves from different walls interact
(Figs. 2,8. Analytic expressions of this type are known for
%he phase equation: thésolutions[15]. Since we are for the
moment considering an unbounded system, the position of
the shock is arbitrary. But in order to use a notation useful
for the next cases, we assume that the shock is at the diago-
nal x=Yy of an arbitrary cartesian frame. We impose different

We have performed numerical simulations of the CGLE
in the domain depicted in Fig. 7, where one of the walls is
broken line with a corner of a definite angle The boundary
conditions are the following: for the right, upper, and bottom
walls, Neumann boundary conditiorfsull-normal deriva-
tive). For the left boundanfwhere the corner is present

null-Dirichlet conditions. This left boundary is a line that is but symmetric wave vectors far from the shock, thaVig

broken forming a variable anglé. If this angle is 180°, gy PR .
there exist the two-dimensional extensions of the standin%_;(kl’k?) It x<y, .and.ch—>(k2,k1) if y=x, thus, geting
e family of solutions:

hole described in the previous section. As the angle de-
creases, the wave is not longer plane, and the phase velocity
adapts to the'new geometry. T_he wave fropts may become go(x,y,t)=[w0+b1(kf+k%)]t+
just slightly distorted from straight line&s in Fig. 8 or

display a kink(similar to the situation in Fig.)2depending b b ke —k
onea, B, and¢. In any case, the kink is never too strong and + —log cosk(—l L 2 (x—y) } (26)
departures from straight wave fronts never large. Changing by by 2

parameters the phase velocity may vanish. The locus in pa- The spatial dependence of this solution can be separated
rameter space where this happens is a 2D surface in tha terms of the variables=x+y andv=x—Yy, and thus, the
(a,B,¢) space. Projections in thea(B8) plane for ¢ phase equation is also separable indv. The change from

kq+
2

%2 x+y)
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(x,y)—(u,v) is a rotation bringing the shock line to one of 0.8

the axes. After inspection of the derivatives normal to the sl 1
shock, we see that half of the¥esolutions can be interpreted ’

as tilted waves approaching a Neumann wall at the shock ~ 04l ]
position, being the other half just a specular image. As for

Neumann tilted waves, we have a biparametric family, pa- 02} ]
rametrized byk; andk,. 00

As solutions of the phase equation, tWesolutions are 00 0'5 ]'0 1'5 0
strictly valid only far from the boundaries, where the modu- ' ) B ' :
lus of the field remains nearly constant. Matching to solu-
tions of the form of Eq(16) should be performed close to FIG. 9. Modulus ofk versus parameteg (for a square with
Dirichlet boundaries. We knovSec. I\) that for this type of  Dirichlet walls, ande=0) obtained from our theoretical arguments
boundaries, the two components of the far-field wave vectolEds. (22—(24) and k,=k,, solid line] and direct numerical
are not independefEgs.(22)—(24)]. For definiteness, let us simulation (diamondg. Around g=1.15, the frozen state
consider two Dirichlet walls along the axesandy, thus  becomes unstable.
meeting at a 90° corner. Matching to one of the walls intro-

duces a relationship betwedn andk; in Egs.(26). The 5 iq a0 ynknown constant of the order of the boundary layer

shock linex=Yy bisects the angle between the walls, and bysize (0~ 1). For given parameter valuesand 3 this expres-

symmetry, no additional constraints appear from matching t%ion gives an extra relationship betwedn and k, or,

the other boundary. Thus, one of the parameters in\the equivalently. between the modulisand the anale of emis-
solution, which can be taken as the angle between the wgd Y . 9 .
waves, is still undetermined. From the numerical simula->'o" fm”? thg walls. This, and Eq®2-24, completely fixes
tions, it appears that this angle becomes determined when i€ Solution in the presence of a corner. _

medium is synchronized by the waves coming from the cor- Of €OUrse, precise numerical values cannot be obtained
ner between the two walls. We do not have a rigorous argu$inceéa is unknown, but the previous heuristic argument was
ment to demonstrate that this is the case, but the followindgntended only to illustrate how the presence of the corner
heuristic argument is a step towards such a demonstratioh€solves the conflict between the neighboring waves, and
Close to the walls, a phase description is no longer valid, anfixes the wave pattern as numerically observed. For situa-
the modulus approaches zero. The solution is of the frozeHons such as the ones depicted in Fig. 8 for which the wave
type, which we write asA(x,y,t)=R(x,y)exdi(# (xy) fronts remain relatively straight, we hakg~k,, which can

—ot)] with real R, ¢, andw. Since this solution should be- be used as a substitute of HGO) to fix the pattern. In fact,

come Eq.(26) far from the walls, we immediately find this is never a bad approximation. For example, from a 90°
corner, straight and symmetric wave fronts indicates wave

_ 22— _ _ 2,2 emission at 45° from each wall. We have checked that this is
0= w0t by(ki ;) Ar(f-akithk). (27 in fact equivalent to Eq(30) with a>=8. Since this value of
a is within the boundary layer range{'= 2 for a=0),
both approachefEq. (30) andk;~k,] are mutually consis-
tent and they can be thought as two different approximations
to the same fact that the corner fixes the wave number. As-
sumingk;=k,, we have plotted in Fig9 a comparison be-
tween the results from the numerical simulations and the
analytical predictiork?=1—(y/1+8/98%) ! for a=0. The
R(X,y)~Bxy, (28) agreement is good and confirms the relevance of the walls
and corners into the wave selection process, and justifies the
ansatz made in the derivation of the theoretical results.
(29) The above arguments have been developed from expres-
sions(28)—(29), which requirea=0. The property explained
in the Appendix implies that the selection mechanism iden-
Close to the walls, the local wave vector =V = tified here will also be present at any valueafEquations
— (w/B)(x,y), so that in the diagonajy= — (w/6)(x,x) with  (28)—(29) are also restricted to a 90° corner. The methodol-
modulus qq= (xw)/\/18. Far from the corner, this wave 09y may be applied to other angles by replacing these ex-
number should match the one obtained from ¥hsolution ~ Pressions by the corresponding behavior at short distances
kq= (K, +K,)/+/2. An approximate way of doing this is im- from the corner. For example, if=0, smallness oR and of

posing that both wave numbers become equal at some di§e wave numbecat Dirichlet walls, the wave-vector com-
tancex~a from the corner: ponent perpendicular to the wall vanishes, so that both com-

ponents will vanish at a cornereduces the equation for the

modulusR to V2R+R~0. This equation is easily solved by
w k1+ k2 . . . .

—a~ (30)  sSeparation of variables in polar coordinates#{) centered at
J18 2 the corner of anglep to give

Sufficiently close to the corner at=y=0, the modulu is
small. Writing for it and forys a Taylor expansion, imposing
symmetry across the=y line, and substituting into the
CGLE (1), we easily find at the lowest order in distance to
the corner the following behavidwe only write down the
expressions for=0):

w
YY)~ o= 5(X*+y?).
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T APPENDIX
R=rmé sm( ¢ 0)’ S The equation resulting from restricting the CGLE E#).
o , . to frozen solutions of the form(x,t)=f(x)e '“!, with » a
which is the substitute of Eq28) for arbitrary angle. real frequency and a possibly complex function of the po-
sition, admits a change of variablg29] that transforms the
VI. CONCLUSIONS case with parametersx(B) into the case with parameters

f I
In this paper we have presented numerical results on theP8"). The transformation is
influence of boundaries in the wave-pattern selection of a

self-oscillatory medium, in parameter regimes in which fro- B'= B-a ' (A1)
zen structures are reached. Analytical solutions in the pres- 1+tap
ence of walls and corners have been presented and shown to
be relevant to the numerically observed configurations. The , w—a
dominance of Dirichlet walls, the relative passive role of © T 1Y ea’ (A2)
Neumann walls, and the synchronization properties of cor-
ners, are possibly generic features that should be found in
. . 1+aw X
other self-oscillatory model systems. Extrapolation to real ' =x [ = ' (A3)
experimental oscillatory media should be made with care, 1+a? l-ao’
however, since determining the correct boundary conditions
applying to the amplitude equation associated to a particular 1+apB
medium is a subtle tasie5,26]. fr=f TToa (A4)

Note addedin the following address we have made avail-
able a web page containing simulations of the CGLE in dif'Obtaining a frozen solutiofii.e., a functionf’(x’) and an

feren'g geomgtries re]ated to this _paper: http://associated frequenay’) at parameterse=0 and8’, thus,
www.imedea.uib.es/Nonlinear/research_topics/cglwalls allows finding corresponding solutiond, ) at arbitrary

values ofa and the corresponding=(B'+a)/(1—apB’).
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