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Complex Ginzburg-Landau equation in the presence of walls and corners
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We investigate the influence of walls and corners~with Dirichlet and Neumann boundary conditions! in the
evolution of two-dimensional autooscillating fields described by the complex Ginzburg-Landau equation. Ana-
lytical solutions are found, and arguments provided, to show that Dirichlet walls introduce strong selection
mechanisms for the wave pattern. Corners between walls provide additional synchronization mechanisms and
associated selection criteria. The numerical results fit well with the theoretical predictions in the parameter
range studied.
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I. INTRODUCTION

Spatially extended nonlinear dynamical systems disp
an amazing variety of behavior, including pattern formatio
self-organization, and spatiotemporal chaos@1–4#. Much ef-
fort has been devoted to the characterization of the diffe
dynamical regimes and the transitions between them
model equations such as the complex Ginzburg-Lan
equation~CGLE! @5#. This is an equation for a complex fiel
A(x,t) that conveniently rescaled reads

] tA5A1~11 ia!¹2A2~11 ib!uAu2A, ~1!

a and b are real parameters. This equation describes
onset of an oscillatory regime through the Hopf bifurcati
of a homogeneous state, and it is used generally as a m
equation due to the rich variety of its solutions. Binary flu
convection@7#, transversally extended lasers@8,9#, chemical
turbulence@10,11#, bluff body wakes@12#, the motion of bars
in the bed of rivers@13#, the jet stream@14#, and other sys-
tems have been described using the CGLE, or coupled p
of similar equations. In this paper, we will restrict ourselv
to situations well described by a single scalar CGLE in
proper parameter range.

The CGLE admits simple plane-wave solutions. Howev
for most of the (a,b) parameter range, a typical evolutio
starting from random initial conditions leads to comple
steady or evolving, states. An important ingredient in
description of these dynamical regimes in two-dimensio
domains is the interaction of singular points calleddefects.
For our purposes, a defect is just a zero of the complex fi
A, where there is a singularity in the phasew defined by the
relationA5uAuexp(iw). There is a topological charge assoc
ated to each defect,n, defined by

n5
1

2p R
G
¹w•dr , ~2!
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whereG is a closed path around the defect. The topologi
nature of the phase singularities implies thatn is a positive or
negative integer, and that the total topological charge in
two-dimensional system is constant, except for the defe
flowing in and out through the boundaries. In the interior
the system, defects can only be created or annihilated in p
of opposite charge.Spiral defects, i.e., defects around which
the lines of constant phase have a spiral form, are typic
formed in the CGLE~for aÞb). The interaction between
these spiral structures has attracted much attention@6#. Spiral
solutions of a different nature appear, e.g., in excitable me
such as the Belousov-Zabotinsky reaction@15,16# and
electro-hydrodynamic convection~see, e.g., Ref.@17#!.

One important source of defects in real systems are
boundaries. Under some circumstances, walls can introd
defects into the system increasing the amount of disorde
the dynamics. In other situations, the boundaries play
opposite role: they annihilate defects driving the system t
more ordered state. In general, the interplay between th
two behaviors and the proper dynamics of the bulk can p
the system to configurations different from the ones fou
under boundary-free conditions~periodic boundary condi-
tions, for instance!. However, few studies have addressed
influence of the boundary shapes and boundary condition
complex dynamics. The importance of these effects in
transverse patterns of laser emission, where aspect ratio
not large, is visible in recent works such as@18,19#. In addi-
tion, average patterns in Faraday waves and other spatio
porally chaotic systems have been observed to be sensib
boundary shape@20,21# and boundaries are able even to i
duce spatial chaos in otherwise nonchaotic systems@22#. All
those strong influences of boundaries on the dynamics
extended nonlinear systems@23# provides us with the moti-
vation for a more systematic study of boundary effects on
CGLE performed in this paper.

In Ref. @24#, we performed a first numerical exploratio
of these effects, via computer simulations of the CGLE
circular and rectangular geometries with null-Dirichl
boundary conditions. The results reveal a fundamental
of boundaries in selection mechanisms. In particular, w
emission from Dirichlet walls~i.e., walls whereA50), and
the dominance of corners as pacemakers for the whole
©2001 The American Physical Society05-1
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tem were important observed effects. Understanding the
gin of such effects is the main goal of this paper. To achie
it, we will focus first on the effect of a single lateral wa
where the complex field is set to zero, in the selection of
pattern. After this, we will study how the presence of corn
~i.e., the intersection of two walls! restricts the family of
solutions found previously. It should be noted that we u
Dirichlet boundary conditions~and in some parts of this pa
per, also Neumann boundary conditions! as simple phenom
enological conditions to explore deviations with respect
the more commonly used periodic boundaries. A differ
issue is to establish what are the pertinent boundary co
tions arising for the CGLE when it is derived as an amplitu
equation in particular physical contexts~for example in op-
tics, fluids, etc.!. Some results in this last subject can
found in Refs.@25,26#.

In the next section we review previous numerical resu
on the CGLE in several geometries and boundary conditio
In Sec. III, we summarize analytical solutions in unbound
domains. In Sec. IV, we present analytical and numer
results for the CGLE in the presence of a lateral Dirich
wall. In Sec. V, we extend our study to the case of corn
and in Sec. VI, we finish with our Conclusions.

II. NUMERICAL OBSERVATIONS

It is quite evident, and confirmed by our previous stu
@24#, that the effect of boundaries is more noticeable in
parameter regimes for which large correlation lengths
present in the system. In strongly chaotic states with sh
correlation lengths, the main effects of walls are restricted
boundary layers close to them. Consequently, we restrict
the presentation of our numerical results to the region
parameters for which coherent oscillations extend o
nearly the whole system. This happens in most of
Benjamin-Feir stable region in parameter space, that is,
11ab.0, but also in other regions close to it. Defects a
shocks however disrupt the otherwise ordered plane wa
and its location and structure are strongly dependent
boundaries. In Fig. 1, the CGLE is solved in a square w
null-Dirichlet boundary conditions (A50) @27#. The zero-
amplitude boundaries facilitates the formation of defects n
the walls. Starting from random initial conditions, defects a
actively created in the early stages of the evolution~See Fig.
1!. After some time, however, all the points on the boun
aries synchronize and oscillate in phase so that plane w
are emitted. Defect formation ceases, and the waves em
by the walls push the remaining defects towards the cen
region of the domain. There the defects annihilate in pairs
opposite charge, and as a result of this process, a bound
is formed by the surviving set of equal-charge defects. T
orientation of the waves emitted by the boundaries a
changes during the evolution. The synchronized emissio
the early stages produces wave propagation nearly per
dicular to the boundary, but in the late states the wave ve
tilts to some emission angle of approximately 45°. The p
cise value of this angle depends on both the parameter va
and the geometry of the boundaries. The fact that this an
is not exactly 45° is made evident by the slight misma
03620
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between the waves coming from orthogonal walls. Fina
the system reaches a frozen state of the type displayed in
2. The termfrozenis used here to denote that the modulus
a steady solution, although the phase is time periodic. M
concretely, our frozen configurations are well described
A(x,t)5 f (x)e2 ivt, with v real andf a possibly complex
function of position.

FIG. 1. Time evolution of the solution of the Eq.~1! at arbitrary
times with parameter valuesa52, b520.2. The initial conditions
is random. When the boundary starts emitting waves, the sp
defects are pushed to the interior of the domain and annihilat
pairs of opposite charge. The modulus of the field is plotted in
left column and the phase in the right. Gray scale runs from bl
~minimum! to white ~maximum!. The final state~not shown! con-
tains a single defect, as the one in Fig. 2~a!.

FIG. 2. Frozen structures under null Dirichlet boundary con
tions in a square of size 1003100. Parameter values area52, b
520.2 ~a,b!, anda52, b520.6 ~c,d!. Snapshots of the modulu
uAu of the field are shown in the left column and snapshots of
phase in the right column. Gray scale as in Fig. 1.
5-2
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In the final frozen state, defects are confined in the ce
of the domain forming a rigid static chain. Shock lines a
pear where waves from different sides of the contour colli
The strongest shocks are attached perpendicularly to
walls and the general shock configuration is what one wo
expect for small symmetry breaking of the square geom
@28#. The number of defects depends on the initial conditi
Solutions with no defects are also found@e.g., Figs. 2~c,d!#,
and are calledtargetlike solutions. This kind of solutions is
not seen in simulations with periodic boundary condition

In our simulations in the square geometry with Dirich
boundary conditions, the direction of the phase veloc
~from the walls or towards the walls! and the wave numbe
depend on the parameter values in a way that differs from
usual spiral waves in infinite systems~see Ref.@29# and Sec.
III !. Thus, boundaries are playing an important role in
selection of the wave speed and wave number.

In a circular domain~Fig. 3!, the frozen structures ar
either targets~no defects! or a single central defect. Group
of defects of the same charge can also form bound states
instead of freezing, they rotate together. This contrasts w
the behavior of the square domains and is correlated with
absence of shock lines linking the boundaries to the cente
the case of the circular domains. These links are proba
responsible for providing rigidity to the stationary config
ration in the square case. Tiny shock lines associated to s
departures from circularity in the lines of constant phase
be observed also in the circle but these lines end in the b
of the region before reaching the boundaries. On the o
hand, the constant-phase lines reach the boundaries n
tangentially in contrast to what we observe in the square.
circular domains, the phase-velocity direction changes w
parameters in a way more similar to the infinite-system s
ral. This is another feature revealing that circular bounda
introduce less rigidity into the pattern than square ones.
absence of corners is probably the main qualitative diff
ence. In fact, when corners are present, they are observ

FIG. 3. Frozen structures under null Dirichlet boundary con
tions in a circle of diameter 100 for parameter valuesa52, b5
20.2 ~a,b!, and a52, b520.6 ~c,d!. Snapshots of the modulu
uAu are shown in the left column and the phase is shown in the r
column. Gray scale as in Fig. 1.
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act as pacemakers from which wave emission entrains
whole system@24#.

The stadium shape~Fig. 4! mixes features of the two ge
ometries previously studied: it has both straight and circu
borders. In this case, the curves of constant phase arr
themselves to combine the two behaviors described ab
On the one hand the lines meet the straight portions of
border of the stadium with some characteristic angle, a
happens in square domains. However, these lines ben
become nearly tangent to the semicircles in the places w
they meet with these portions of the boundaries. A typi
frozen solution displays a shock line connecting the cen
of the circular portions of the domain. This shock line us
ally contains defects and their dynamics in this stage is m
slower than the annihilation that occurs in the bulk of a d
main without the presence of shocks. It is also possible
find defect-free target solutions as in the case of the cir
and the behavior of the phase velocity is also similar in
way its direction can be changed by modifying the para
eters.

To summarize, Dirichlet boundary conditions play
double role. On one hand, the walls naturally behave
sources~or sinks! of defects. On the other hand, a wall wit
null-Dirichlet conditions shows a tendency to emit pla
waves that will coherently fill the whole system. The inte
play between these two properties of the boundaries g
rise to interesting behavior. In the case of frozen states,
character of the walls as wave emitters dominates. The in
section of two walls~a corner! is observed also to emi
waves, and the whole system becomes synchronized to
corner emission. In circular domains, on the other ha
there are no corners and wave selection is definitively do
nated by the internal spirals. Another aspect of the dynam
dominance of the walls in the square case is that defects f
a chain that is anchored to the boundaries by a set of sh
lines; in a circle, on the contrary, the asymptotic state
usually a bound state disconnected from the boundaries

Gaining some understanding of aspects of our numer
observations is the goal of the next sections.

-

ht

FIG. 4. Frozen structures under null Dirichlet boundary con
tions in domain with stadium shape of axis 2003100 for parameter
valuesa52, b520.2. Snapshots of the modulusuAu are shown in
~a! and the phase is shown in~b!. Gray scale as in Fig. 1.
5-3
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III. SOLUTIONS IN UNBOUNDED DOMAINS

In this section, we review some of the analytical solutio
of the CGLE in unbounded domains. First we start w
plane waves, continue with one-dimensional holes, and fin
with two-dimensional spirals.

The CGLE possesses, among many other solution
family of plane-wave solutions and solutions containi
phase-singular points. The plane-wave continuous famil
parametrized by the corresponding wave-numberk. The
form of the solutions isA5R exp@i(k•x2vt)#, where R
5A12k2, v(k)5b2k2(b2a), and k5uku. The limit of
stability of plane waves is known as the Benjamin-Feir li
and is given by the curve 11ab50; if this quantity is posi-
tive, some stable plane wave exists@30#; if 1 1ab,0, all
plane waves are unstable. The limit is given by the stabi
of the plane wave withk50. Stability analysis gives tha
plane waves possessing wave-numberk in the range@2kc ,
kc], where kc5A(11ab)/(31ab12b2), are stable. The
instability is with respect to long-wavelength disturbanc
whose wave vectors are parallel tok ~Eckhaus instability!
@30#. It will be useful for the future discussion to have a
expression for thephase velocityof the waves, and of the
group velocityof small perturbations on such waves,vph and
vgr , respectively

vph5
v~k!

k
k̂, ~3!

vgr522k~b2a!k̂ . ~4!

k̂ is the unit vector in the direction ofk. The expression for
the group velocity@31# turns out to be equivalent to th
linearly looking expressionvgr5¹kv(k), even thoughv(k)
is the dispersion relation of nonlinear waves.

In addition to simple waves, the one-dimensional CG
possess a one-parameter family of solutions for which
amplitude displays a region of local depression. Their a
lytic form was determined by Nozaki and Bekki@32#, and
they are, therefore, also referred to as Nozaki-Bekki so
tions or holes. One member the family is characterized
the value ofA being zero at a point, called thecore of the
hole, and asymptotically behaving, at both sides of the c
as a plane wave of wave-numberk. It is worth noting that
this one-dimensional hole solution was also obtained
Hagan @29# as a subproduct of his calculations for tw
dimensional spirals. At variance with the other members
the Nozaki-Bekki family, this hole does not travel into th
system, and thus, it will be denoted as thestanding hole. Its
analytical expression~choosing the origin of coordinates a
the hole core! can be written as

WH~x,t !5A12k2 tanh~px!exp@ i $c~x!2vt%#, ~5!

wherec is a function ofx satisfying

dc/dx5k tanh~px!, ~6!

@i.e., c5c01(k/p)log cosh(px), with c0 an arbitrary refer-
ence phase# andv, k, andp are related according to
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v5b2k2~b2a!, ~7!

k5
2p221

3pa
, ~8!

$4~b2a!118a~11a2!%p42$4~b2a!19a~11ab!%p2

1b2a50. ~9!

If a50, we get

v5b~12k2!, ~10!

p51/A2, ~11!

b52
3k

A2~12k2!
. ~12!

Thusb andk have opposite sign (bk,0), whena50. For
any value ofa andb, the existence of a defectlike solutio
fixes the value of the asymptotic wave-numberk and accord-
ingly that of v. We mention here that for configurations o
the frozen type, the solutions witha arbitrary can be ob-
tained from the ones witha50 by means of a change o
variables. This fact, which frequently simplifies analysis,
detailed in the Appendix.

The phase and group velocity far from the core for t
one-dimensional standing hole witha50 are

vph5
b~12k2!

k
52

3

A2
,0, ~13!

vgr522kb.0. ~14!

Thus, the propagation of the phase is towards the core of
defect independently of the value ofb. However, the group
velocity is directed outwards from the core of the defe
Thus, small perturbations to this solution are expelled aw
from the core. The case of arbitrarya can also be solved
numerically from Eqs.~7!–~9!. Given the parameters (a,b),
the line where the phase velocity is zero can be found an
is plotted in Fig. 5. The group velocity turns out to be alwa
positive ~i.e., outwards from the core! for the standing hole
solutions.

The two-dimensional spiral wave solutions of the CGL
are solutions winding around a defect core~i.e., a phase sin-
gularity!. In polar coordinates (r ,u) around the core, they
have the analytical form@29#:

D~r ,u,t !5R~r !exp@ i ~u1S~r !2vt !#. ~15!

This solution represents a phase pattern rotating stea
aroundr 50 with frequencyv ~and frozen modulus!. The
amplitudeR is a monotonically increasing function ofr, pro-
portional tor near the origin, and asymptotically approac
ing some valueR`,1 for large r. The functionS behaves
smoothly in the neighborhood of the origin, taking the for
S;S01S1r 2. Far from the originS becomes proportional to
r, behaving asS;kr. In this way, in the distant region, th
5-4
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isophase lines approach the form of Archimedian spir
converging to plane waves with wave-numberk. Thus,R`

5A12k2 andv5b2k2(b2a). The charge of solutions o
the form Eq. ~15! is, according to Eq.~2!, equal to11.
There exists also a negatively charged spiral, with the fo
of Eq. ~15! but with u replaced by2u. In spiral waves, wave
motion is induced in such a manner as to cause the gl
synchronization of the medium by the defect.

It is important to notice that, in both one~the standing
hole! and two dimensions~the spiral solution!, imposing the
requirements of zero field at the core, and plane-wave be
ior far from the core, the value ofk gets fixed. Thus, fixing
the parameter values (a,b), the spiral structure~and the
standing hole! is unique~except for an arbitrary change i
the location of the core!. The precise way in which wave
number, frequency, phase or group velocities depend on
rameter values (a,b) can be found, for example, in Re
@29#.

IV. SOLUTIONS WITH A SINGLE WALL

As a first step to understanding the solutions of the CG
in bounded domains, we study in this section solutions in
presence of a single wall where the value of the comp
field A is set to zero. We observe numerically that, start
from random initial conditions in a bounded domain with
single Dirichlet wall, frozen solutions are reached asympt
cally ~see Fig. 6!. In our numerical implementation, the D
richlet wall (A50) is the left one, Neumann boundary co
ditions ~zero normal derivative ofA) are applied to the righ
wall, and the upper and lower limits of the domain are ide
tified via periodic boundary conditions. We use the Neuma
wall because previous numerical results@24# reveal its rather
passive sink role, being able to absorb waves and def
without altering the selection mechanisms imposed by
Dirichlet wall. Initially, some ~spiral! defects are formed
Typically, the Dirichlet wall starts to emit plane waves th
push the defects towards the opposite boundary until they

FIG. 5. Parameter space of the CGLE. Different regions
separated by solid lines: BF unstable regime where there ar
stable plane-wave solutions in the infinite system; regions where
phase velocityvph is positive or negative are also shown, and se
rated by an additional solid line for the case in which a sin
Dirichlet wall is present in the system~this line applies also to the
one-dimensional standing hole!. Star line corresponds to zero pha
velocity for emission from a corner between two Dirichl
walls spanning an angle of 135°; diamond line corresponds
90° corner.
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all expelled or annihilated. The stationary solution is the tw
dimensional extension of the one-dimensional standing h
solution described in Sec. III@that is a continuous line o
holes with their cores on the wall:WH(x,y,t)5WH(x,t)].

We can investigate the possibility of more complex so
tions in which the amplitude is independent of they direction
and takes the form of a hole solution in one dimension,
with a phase that depends explicitly on both coordinates.
study first the case ofa50 to come back later to the gener
case.

We look for solutions of the form

WW~x,y,t !5A12k2 tanh~px!exp@ i $c~x,y!2vt%#
~16!

with v5b(12k2) and k25kx
21ky

2 . Assuming the form
c(x,y)5c(x)1c(y), we get the relations

]xc~x,y!5kx tanh~px!, ~17!

]yc~x,y!5ky , ~18!

2p2512ky
2 , ~19!

e
no
he
-

a

FIG. 6. Modulus~left column! and phase~right column! of the
solution of Eq.~1! for a52 andb520.2 with Dirichlet boundary
conditions for the left boundary, Neumann for the right one, a
periodic in the horizontal ones.~a,b!: Early-time state starting from
random initial conditions of small amplitude.~c,d!: The final
asymptotic state. The lines of constant phase travel to the ri
Notice that although there is a developed spiral defect, it disapp
through the Neumann boundary at long times.~e,f!: The long-time
asymptotic state from an initial condition consisting of distort
plane wave with wave vector oblique to the boundaries. A solut
of the form Eq.~16!, with wave vector close to the initial one, i
finally reached.
5-5
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3kxp5b~12k2!, ~20!

and substitution of Eq.~19! into Eq. ~20! gives

3kxA12ky
2

A2
52b~12k2!. ~21!

Note that if ky50 we recover the expression for the on
dimensional standing hole solution@in particular we recover
Eq. ~12!#.

We can perform a similar calculation for the general ca
of parametersa andb. For a solution of the form Eq.~16!,
Eqs.~17! and ~18! remain valid, andv, k, andp are related
according to

v5b2k2~b2a!, ~22!

kx52
2p21ky

221

3pa
, ~23!

0523pkx1a~2p22kx
2!2b~12k2!. ~24!

In contrast with the selection mechanism for the stand
hole or the spiral solutions, the presence of the wall does
select a unique wave vector, but a one-parameter famil
solutions parametrized by eitherkx or ky arises instead from
Eqs. ~17!–~21! or ~22!–~24! for given values ofa and b.
Different solutions in the family differ in the direction an
magnitude of the wave-vectork. Different wave vectors
change the angle of intersection between the lines of cons
phase and the wall. Figures 6~e–f! are the final state in a
numerical simulation in which the initial condition was clo
to Eq. ~16! with k oblique with respect the wall. The dis
played state is identical~far enough from the Neumann wal!
to Eq.~16! with Eqs.~22!–~24! thus numerically proving the
stability of this solution. Different orientations ofk can be
tested in the same way. However, if starting with rand
initial conditions, we typically find solutions correspondin
to the caseky50 @Figs. 6~c–d!# that is the simplest two-
dimensional extension (ky50) of the standing hole.

The prevalence of theky50 solution when starting from
random initial conditions~of small amplitude! can be under-
stood from the characteristics of the linear instability of t
state A50, and from the effect of the periodic bounda
conditions used in the walls perpendicular to the Dirich
one in our simulations~horizontal walls in Fig. 6!: The peri-
odic conditions imply that they-winding numberny , defined
by an integral similar to Eq.~2! in which the pathG stars and
ends in corresponding points of the horizontal boundaries
quantized, and it remains constant if defects are not crea
This is the case in the parameter range considered here
a short transient of linear evolution in which the nonline
state is developed. In consequence, theny of the final state is
determined by the value of this quantity at the end of
linear regime. No such rigidity occurs alongx because of the
nonperiodic conditions used. The linear regime in which
pattern grows starting fromA'0 can be analyzed by ne
glecting the nonlinear term in Eq.~1! and introducing the
ansatzA(x,y,t)5 f (x,y)eet. By separation of variables, an
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imposing periodicity in the directiony, finiteness at largex,
and the Dirichlet condition atx50, one finds that the linea
eigenmodes are of the formf kx ,ky

(x,y)5ekyysin(kxx), with

eigenvalues e512(11 ia)(kx
21ky

2). Thus, eigenmodes
with small wave numbers grow faster and will dominate
the beginning of the nonlinear saturation regime, as is ind
observed. The periodic boundary conditions in they direc-
tion quantize the value ofky of the eigenmodes, thus forbid
ding any smallky different from zero.ky50 givesny50,
and this value will be preserved by the nonlinear regime.
consequence, typicallykx will adapt to the nonlinearly im-
posed value given by Eqs.~22!–~24! for constantky50.
These arguments are confirmed by numerical simulati
with three Neumann walls and one Dirichlet one, in whic
tilted waves with small, but not always zero, values ofky are
obtained outside the boundary layers around de Neum
walls.

We note that, although solutions~16! represent emission
at an angle with the wall, the analytic expression predict
small boundary layer~of sizep21) in which the wave num-
ber leaves its asymptotic orientation to become parallel to
wall, so that isophase lines arrive perpendicular to
boundary. This is observed in the numerical solutions~see,
for example, Fig. 6~f!, and also the rectilinear walls of Figs
1, 2, and 4! thus, nicely confirming the relevance of th
analytical solutions of the observed configurations. In
case of wave emission perpendicular to the wall~and thus,
wave number also perpendicular to it!, the analytical expres-
sions imply that this wave number also vanishes at
boundary. Thus, as a rule, the wave-vector component
pendicular to the wall always vanishes at the wall. We do
observe an analogous vanishing of the wave-number com
nent perpendicular to the wall in the case of curved walls
the square, however, conflict between the orientation emi
by neighboring walls occurs, and the exact expression~16! is
appropriate only near each wall. The conflict between nei
boring walls is resolved at long times by emission from t
corner, as will be seen in the next section.

Another important kind of solutions with a single wall
the one that appears with Neumann boundary conditio
The solutions observed close to the right wall in Figs. 6~c–f!
are of this type. These solutions have been already analy
in the literature, especially in the context of interactions b
tween spirals. The reason is that a Neumann wall acts
reflecting boundary, so that having a wave impinging into
boundary is equivalent to the interaction between t
sources of waves located symmetrically with respect to
wall @6#. Despite the interest of such solutions, no exact a
lytical expression has been found for them. Analytical so
tions have been obtained, however@33#, by solving the phase
equation that approximates the phase dynamics for small
plitude perturbations~see Sec. V B!. In agreement with the
numerical observations, the solution presents a maxim
modulus at the wall~a shock! and the isophase lines, straig
in the far field, deform when entering a boundary layer clo
to the wall to arrive perpendicular~for tilted far-field inci-
dence! to the wall. We will see in the following that thes
‘‘tilted Neumann waves’’ are of relevance when corne
are present.
5-6
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It is clear on physical grounds, and confirmed by the a
lytical expressions from the phase approximation, that
Neumann wall can act as a sink of waves of arbitrary f
field orientation and wavelength~the maximum modulus a
the shock will adapt accordingly!. Neumann waves consti
tute, then, a biparametric family for fixed (a,b), and Neu-
mann walls do not impose special selection mechanisms

V. SOLUTIONS IN PRESENCE OF CORNERS

We now pay attention to the effects induced by the pr
ence of corners, i.e., how the solutions adapt to the emis
of two semi-infinite lines. In Sec. V A we will show that th
phase velocity not only depends on the parameters of
CGLE a andb, but also on the anglef between the walls of
the boundary. In Sec. V B, we will present solutions of t
phase equation representing wave collision; they are usu
called V solutions. These solutions should be matched w
the boundaries, which provide selection mechanisms for
wave pattern.

A. Phase velocity dependence on the angle at the boundary

We have performed numerical simulations of the CG
in the domain depicted in Fig. 7, where one of the walls i
broken line with a corner of a definite anglef. The boundary
conditions are the following: for the right, upper, and botto
walls, Neumann boundary conditions~null-normal deriva-
tive!. For the left boundary~where the corner is present!,
null-Dirichlet conditions. This left boundary is a line that
broken forming a variable anglef. If this angle is 180°,
there exist the two-dimensional extensions of the stand
hole described in the previous section. As the angle
creases, the wave is not longer plane, and the phase vel
adapts to the new geometry. The wave fronts may beco
just slightly distorted from straight lines~as in Fig. 8! or
display a kink~similar to the situation in Fig. 2! depending
on a, b, andf. In any case, the kink is never too strong a
departures from straight wave fronts never large. Chang
parameters the phase velocity may vanish. The locus in
rameter space where this happens is a 2D surface in
(a,b,f) space. Projections in the (a,b) plane for f

FIG. 7. Domain and boundary conditions for the simulations
Sec. V. InA andB, null-Dirichlet boundary conditions;C, D, andE,
null-Neumann boundary conditions.
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5180° @obtained from Eq.~5!# andf5135° ~from numeri-
cal simulation! are plotted in Fig. 5.f590° corresponds to a
square and is also plotted in Fig. 5. We do not see differen
between squares with two or four Dirichlet walls.

Summarizing, for frozen structures, the presence of
richlet walls establish a selection mechanism different fr
the associated to the presence of a spiral core in an infi
domain ~Sec. III!. When the Dirichlet wall is broken, it is
seen in the earliest stages of wave-pattern development
emission with isophases nearly parallel to the walls is in
ated, but collision between the waves from different wa
arises and a distinct final state, with wave number, ph
velocity, etc., fixed by (a,b,f) is reached. We now investi
gate how this may happen.

B. V solutions of the phase equation and pattern selection

For unbounded domains and for small amplitude modu
tions, a phase description of the complex fieldA can be
made. The approximate equation for the phase is@15#

ẇ5v01b0¹2w1b1~¹w!2, ~25!

whereb0511ab, b15(b2a), andv052b. The modu-
lus R of the solution is slaved to the phase asR2'1
2(¹w)22a¹2w.

We look for solutionsw5w(x,y,t) representing phase
waves with nonstraight isophase lines. This is what is
served when Dirichlet waves from different walls intera
~Figs. 2,8!. Analytic expressions of this type are known fo
the phase equation: theV solutions@15#. Since we are for the
moment considering an unbounded system, the position
the shock is arbitrary. But in order to use a notation use
for the next cases, we assume that the shock is at the di
nal x5y of an arbitrary cartesian frame. We impose differe
but symmetric wave vectors far from the shock, that is,w
→(k1 ,k2) if x!y, and,w→(k2 ,k1) if y@x, thus, getting
the family of solutions:

w~x,y,t !5@v01b1~k1
21k2

2!#t1
k11k2

2
~x1y!

1
b0

b1
logFcoshS b1

b0

k12k2

2
~x2y! D G . ~26!

The spatial dependence of this solution can be separ
in terms of the variablesu5x1y andv5x2y, and thus, the
phase equation is also separable inu andv. The change from

FIG. 8. Phase of the solution of Eq.~1! in gray scale, for pa-
rameter valuesa52, b520.2. In ~a! the angle f5p/2
1tan21(1/5); ~b! f53p/4.
5-7
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EGUÍLUZ, HERNÁNDEZ-GARCÍA, AND PIRO PHYSICAL REVIEW E64 036205
(x,y)→(u,v) is a rotation bringing the shock line to one
the axes. After inspection of the derivatives normal to
shock, we see that half of theseV solutions can be interprete
as tilted waves approaching a Neumann wall at the sh
position, being the other half just a specular image. As
Neumann tilted waves, we have a biparametric family,
rametrized byk1 andk2.

As solutions of the phase equation, theV solutions are
strictly valid only far from the boundaries, where the mod
lus of the field remains nearly constant. Matching to so
tions of the form of Eq.~16! should be performed close t
Dirichlet boundaries. We know~Sec. IV! that for this type of
boundaries, the two components of the far-field wave vec
are not independent@Eqs.~22!–~24!#. For definiteness, let u
consider two Dirichlet walls along the axesx and y, thus
meeting at a 90° corner. Matching to one of the walls int
duces a relationship betweenk1 and k2 in Eqs. ~26!. The
shock linex5y bisects the angle between the walls, and
symmetry, no additional constraints appear from matching
the other boundary. Thus, one of the parameters in thV
solution, which can be taken as the angle between the
waves, is still undetermined. From the numerical simu
tions, it appears that this angle becomes determined whe
medium is synchronized by the waves coming from the c
ner between the two walls. We do not have a rigorous ar
ment to demonstrate that this is the case, but the follow
heuristic argument is a step towards such a demonstra
Close to the walls, a phase description is no longer valid,
the modulus approaches zero. The solution is of the fro
type, which we write asA(x,y,t)5R(x,y)exp@i(c (x,y)
2vt)# with real R, c, andv. Since this solution should be
come Eq.~26! far from the walls, we immediately find

v5v01b1~k1
21k2

2!52b1~b2a!~k1
21k2

2!. ~27!

Sufficiently close to the corner atx5y50, the modulusR is
small. Writing for it and forc a Taylor expansion, imposing
symmetry across thex5y line, and substituting into the
CGLE ~1!, we easily find at the lowest order in distance
the corner the following behavior~we only write down the
expressions fora50):

R~x,y!'Bxy, ~28!

c~x,y!'c02
v

12
~x21y2!. ~29!

Close to the walls, the local wave vector isq5¹c5
2(v/6)(x,y), so that in the diagonalqd52(v/6)(x,x) with
modulus qd5(xv)/A18. Far from the corner, this wav
number should match the one obtained from theV-solution
kd5(k11k2)/A2. An approximate way of doing this is im
posing that both wave numbers become equal at some
tancex'a from the corner:

v

A18
a'

k11k2

A2
~30!
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a is an unknown constant of the order of the boundary la
size (p21). For given parameter valuesa andb this expres-
sion gives an extra relationship betweenk1 and k2 or,
equivalently, between the modulusk and the angle of emis
sion from the walls. This, and Eqs.~22–24!, completely fixes
the solution in the presence of a corner.

Of course, precise numerical values cannot be obtai
sincea is unknown, but the previous heuristic argument w
intended only to illustrate how the presence of the cor
resolves the conflict between the neighboring waves,
fixes the wave pattern as numerically observed. For sit
tions such as the ones depicted in Fig. 8 for which the w
fronts remain relatively straight, we havek1'k2, which can
be used as a substitute of Eq.~30! to fix the pattern. In fact,
this is never a bad approximation. For example, from a 9
corner, straight and symmetric wave fronts indicates wa
emission at 45° from each wall. We have checked that thi
in fact equivalent to Eq.~30! with a258. Since this value of
a is within the boundary layer range (p215A2 for a50),
both approaches@Eq. ~30! andk1'k2] are mutually consis-
tent and they can be thought as two different approximati
to the same fact that the corner fixes the wave number.
sumingk15k2, we have plotted in Fig. 9 a comparison be-
tween the results from the numerical simulations and
analytical predictionk2512(A118/9b2)21 for a50. The
agreement is good and confirms the relevance of the w
and corners into the wave selection process, and justifies
ansatz made in the derivation of the theoretical results.

The above arguments have been developed from exp
sions~28!–~29!, which requirea50. The property explained
in the Appendix implies that the selection mechanism id
tified here will also be present at any value ofa. Equations
~28!–~29! are also restricted to a 90° corner. The method
ogy may be applied to other angles by replacing these
pressions by the corresponding behavior at short distan
from the corner. For example, ifa50, smallness ofR and of
the wave number~at Dirichlet walls, the wave-vector com
ponent perpendicular to the wall vanishes, so that both c
ponents will vanish at a corner! reduces the equation for th
modulusR to ¹2R1R'0. This equation is easily solved b
separation of variables in polar coordinates (r ,u) centered at
the corner of anglef to give

FIG. 9. Modulus ofk versus parameterb ~for a square with
Dirichlet walls, anda50) obtained from our theoretical argumen
@Eqs. ~22!–~24! and kx5ky , solid line# and direct numerical
simulation ~diamonds!. Around b.1.15, the frozen state
becomes unstable.
5-8
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R'rpf sinS p

f
u D , ~31!

which is the substitute of Eq.~28! for arbitrary angle.

VI. CONCLUSIONS

In this paper we have presented numerical results on
influence of boundaries in the wave-pattern selection o
self-oscillatory medium, in parameter regimes in which fr
zen structures are reached. Analytical solutions in the p
ence of walls and corners have been presented and show
be relevant to the numerically observed configurations. T
dominance of Dirichlet walls, the relative passive role
Neumann walls, and the synchronization properties of c
ners, are possibly generic features that should be foun
other self-oscillatory model systems. Extrapolation to r
experimental oscillatory media should be made with ca
however, since determining the correct boundary conditi
applying to the amplitude equation associated to a partic
medium is a subtle task@25,26#.

Note added.In the following address we have made ava
able a web page containing simulations of the CGLE in d
ferent geometries related to this paper: http
www.imedea.uib.es/Nonlinear/research_topics/cglwalls
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APPENDIX

The equation resulting from restricting the CGLE Eq.~1!
to frozen solutions of the formA(x,t)5 f (x)e2 ivt, with v a
real frequency andf a possibly complex function of the po
sition, admits a change of variables@29# that transforms the
case with parameters (a,b) into the case with parameter
(0,b8). The transformation is

b85
b2a

11ab
, ~A1!

v85
v2a

11va
, ~A2!

x85xA11av

11a2
5

x

A12av8
, ~A3!

f 85 fA11ab

11va
. ~A4!

Obtaining a frozen solution~i.e., a functionf 8(x8) and an
associated frequencyv8) at parametersa50 andb8, thus,
allows finding corresponding solutions (f ,v) at arbitrary
values ofa and the correspondingb5(b81a)/(12ab8).
This useful relationship has been used along this pape
generate solutions at arbitrary parameters from easier s
tions ata50. Note that if f 8 contains a factor of the form
eik8•x8, then f will have a factor of the formeik•x, with k
5k8/A12av8.
-
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